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Abstract: A lens-reflector antenna comprises a hemispherical dielectric lens with a planar reflector. Beam
scanning may be achieved by moving a primary feed around the fixed lens or by rotating the lens reflector
with respect to a fixed feed. Truncation of the reflector and obstruction of the aperture by mechanical
supports introduce scanning loss. These effects are analysed through a numerical technique where the
spherical wave expansion method is used to populate an effective aperture matrix in the near field, which is
then modified to account for shadowing effects. The results are verified by a measurement campaign using a
scale model and by comparison with the commercial EM solver FEKO.
1 Introduction
This investigation is driven by a resurgence of interest in the
lens-reflector antenna as a multibeam or scanning antenna for
communications applications [1, 2]. This class of antenna
uses a planar reflector against the flat surface of a
hemispherical dielectric lens, which may be a constant
index, stepped-index or Luneburg lens. Ideally, a ground
plane of sufficient area recovers the full aperture of a
spherical lens whereas in practice a finite ground plane
truncates the aperture and thus introduces scanning loss.
The geometry is shown in Fig. 1. Also of interest is the
case where a mechanical rail surrounds the lens and
introduces further aperture blockage, which contributes to
scanning loss. Since scanning loss is a critical factor in this
class of antenna, we report techniques for both its
estimation and mitigation.

Aperture blockage has received attention mostly for
reflector antennas. In [3] the effect of blockage by the
primary feed is considered by modifying the domain of
integration of surface currents so that the masked portion
of the aperture is removed; scattering by the supports is
then considered by a ray tracing technique. In [4] the
scattering by an infinite cylinder in front of a linear array of
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sub-apertures is considered by expressing the scattered field
as a modal expansion: since a linear array is used to model
the aperture this approach derives far-field patterns in one
axis only for either horizontal or vertical cylinders.
Shadowing by zone edges in a Fresnel lens is approached
in [5] by computing the total shadowed area rather than
diffraction effects at these edges. Aperture efficiency is then
expressed from the new effective aperture area: even though
the true lens aperture field distribution is not considered,
this relatively simple method yields good agreement with
measurements. In a similar way, Sachidananda and
Ramakrishna [6] treat a blocked region of an aperture as
totally absorbing. Another method for blocked reflectors
uses the power coupling theorem [7], which combines
physical optics (PO) with ray tracing.

In this paper we describe a computationally efficient
technique to estimate the effects of ground plane truncation
and aperture blocking structures in lens-reflector antennas.
We then apply the method to a single-beam scanning
antenna for communications to airliners at 45 GHz [1] and
then to a multi-beam antenna for satellite communications
to trains. The former is motivated by the requirement for a
compact 27 dBi scanning antenna without recourse to RF
rotary joints or flexible cables and where a constant-index
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Figure 1 Effect of elevation angle on lens-reflector aperture blockage and truncation

a Higher elevation
b Lower elevation
lens offers a promising solution. The latter follows the
development of a stepped-index lens antenna [2, 8, 9] for
satellite communications to trains and where a mechanical
rail surrounding the lens introduces partial blockage. The
theoretical results are compared with both a measurement
campaign and the results using the commercial EM solver
FEKO.

2 Theoretical approach
For the present work we derive the near-field aperture
distribution for a spherical lens and then modify this
distribution to account for truncation and blockage. In
common with many other approaches, for example [3, 5,
6], the shadowed regions are treated as absorbing.

The spherical wave expansion (SWE) is first used to
populate the terms in the near-field aperture, and then the
Microw. Antennas Propag., 2010, Vol. 4, Iss. 7, pp. 828–836
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far field is derived using standard transform techniques.
These transforms are described in the Appendix. For
a given lens and wavelength, the SWE computation is
relatively time consuming, whereas the far-field transform
is relatively fast and thus, importantly, many different
geometries for blocked apertures may be studied quite
quickly.

2.1 Ground plane truncation

Fig. 2 shows the projection of the finite ground plane onto
the aperture plane. Circular and rectangular ground plane
geometries are considered (inset in Fig. 2). For a
rectangular ground plane the derivation of the truncated
region is trivial, and occurs for

y0 , �rgp cos(C) (1)
Figure 2 Projection of ground plane onto aperture matrix
829
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where rgp is the distance from the lens centre to the ground
plane edge and c is the beam scan angle relative to the
ground plane.

The finite circular ground plane is less straightforward and
requires consideration of the great circle described by the
ground plane edge (Fig. 3), which is then projected onto
the aperture plane.

Borrowing somewhat from [2] we derive the spherical
co-ordinates of this circle using

f ¼ arctan( tan b sinC) (2)

u ¼
p

2
� arcsin( cosC sin b) (3)

The Cartesian coordinates on a unit sphere are then

xr ¼ sin u cosf (4)

yr ¼ sin u sinf (5)

Then using the principle of similar triangles, the
corresponding Cartesian points in the aperture plane are

(x0, y0)r ¼ rgp(x, y)r (6)

where rgp is the ground plane radius. It remains to map the
ground plane coordinates onto the aperture plane to derive
a new field distribution where matrix points in the
truncated region are set to zero. This is not yet
straightforward because the rail’s coordinates (x0, y0)r have
been expressed as a function of great circle angle b, while
each point in the aperture matrix is from a Cartesian set in
0
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x0, y0. A simple test for the truncated region can be
performed by recourse to an interpolation function for the
curve (x0, y0)r, for example

F ¼ Interpolation[Table[{x, y}, {b, 0, p, 0:01p}]] (7)

where the instruction Table[fx, yg, fb, 0, p, 0.01 pg]
generates a list of Cartesian values fx, yg as a function of
angle b and the interpolation function F[x] then returns
values of y associated with a given x.

Then, the following test is done for all aperture matrix
points (x0, y0) to zero the truncated points

If jx0j , rgp and F [x0] , y0 then Ex̂(x0, y0) ¼ 0 (8)

However, this test is applied only where y0 exceeds the points
where the ground plane edge lines up with the lens outer
edge, that is, where y0 . F[rlens] and rlens is the lens radius.
These points are labelled p1 and p2 in Fig. 4b. The
truncated aperture distributions (3) for rectangular and
circular ground planes are shown in Fig. 4, for a 4l radius
constant index lens of dielectric constant 2.5 fed by a two-
element end-fire array at z ¼ 24.3l. (The lens dimensions
are naturally expressed in wavelengths l.) Here the near-
field aperture plane extends over 16l and lies at za ¼ 4.3l.
(Highest values of jExj are shown darkest shade.)

The correct formulation thus far can be tested by comparing
the far-field patterns using the direct SWE for the far field and
the aperture transform method. These patterns are shown in
Fig. 5, which also shows the consequence of a fairly severe
aperture truncation because of a low elevation angle of 108.
Figure 3 Circular ground plane as an inclined great circle, showing spherical coordinates
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Figure 4 Form of aperture distribution for rlens ¼ 4l, rgp ¼ 6l, c ¼ 458 for truncated ground planes

a Rectangular
b Circular
As with Fig. 4 the E field is parallel to the ground plane.
Arbitrary polarisations can be handled by a simple rotation
and thus do not require a new SWE computation for the
near-field aperture.

The gain reduction because of the aperture truncation is
evident in Fig. 5 and is in effect a scanning loss. Fig. 6
shows sets of results for computed scanning loss against
elevation angle for different ground planes. The results
from FEKO are also shown.

3 Blockage by circumferential rail
Here we are concerned with a dual-beam scanning antenna
that has been developed for satellite communications to
trains [9, 10], and primarily for geostationary orbit satellites
[11]. A mechanical rail surrounds a 61-cm diameter
stepped-index lens (Fig. 7) and introduces an unavoidable
partial blockage at low elevation angles. The rail provides a

Figure 5 Computed radiation patterns, constant-index lens,
non-truncated and truncated cases
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support for the motor units that drive the feeds in azimuth,
a magnetic strip sensor and for spooled cables that are
carried in grooves on the rail’s outer edge. (These
components were not placed below the ground plane since
this would have added to the total height, which is a
profound disadvantage on trains.) The extent of the
aperture blockage is a function of the rail’s height, its
distance from the lens edge and the elevation angle. Its
height is 36 mm and it sits at a distance 480 mm from the
lens centre.

The form of the projection of the azimuth rail onto the
aperture plane is similar to that of the circular ground plane
(2) to (6), but where the shadowed region now takes the
form of a narrow crescent. The rail also has an image
because of the ground plane as shown in Fig. 8, where the
shadowed region has upper and lower loci respectively (x0,
y0)q and (x0, y0)p.

It remains to combine the lens aperture distribution with
this shadow region to derive a new aperture distribution. In
a similar treatment to that for the circular ground plane, we
use interpolating functions to determine the shadowed
region. This is shown in Fig. 9, superimposed upon the
aperture distribution for the 11l radius stepped-index lens
of the type in [2]. The aperture plane is here defined by
za ¼ 11.5l, a ¼ 0.105l, Al ¼ 44l, leading to a 420 � 420
element aperture matrix. This size also ensures that the
field strength at the aperture edge has decayed to about
250 dB. This geometry was intractable in FEKO because
of the electrical size.

Having detailed the computational steps necessary to
derive scanning loss for arbitrary rail height, radial distance
and elevation angle, it is worth listing some of the
831
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Figure 6 Computed scanning loss against elevation angle for different ground planes
Figure 7 Dual beam scanning lens antenna

Figure 8 Form of projection of azimuth rail onto aperture
matrix
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approximations that have necessarily been taken so as to
retain a computationally tractable problem:

1. The feed is modelled as a two-element end-fire array of
short dipoles in the SWE.

2. We assume that the SWE for a spherical lens is equivalent
to that of a hemispherical lens above an infinite plane reflector.

3. We assume that the field incident upon the azimuth rail is
either totally backscattered or absorbed, and hence set to zero
all shadowed aperture matrix terms.

4. The complexity of the rail’s three-dimensional structure is
not considered: it is modelled as a flat wall of known height
but zero thickness.

We are also concerned with the difference in computed
directivity for the unblocked and blocked aperture rather
than the absolute accuracy of the computed radiation
pattern in either case. Also, the scanning loss is expected to
be a small term and will be compared with a series of
measurements using a scale model in an anechoic chamber.

4 Measurements with scale
model
Owing to the size and mass of the 61 cm scanning lens
antenna, accurate measurements of directivity with and
without the presence of different azimuth rails were not
convenient. In contrast, the smaller two-layer lens antenna
IET Microw. Antennas Propag., 2010, Vol. 4, Iss. 7, pp. 828–836
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Figure 9 Contour plot of aperture matrix jExj partially blocked by azimuth rail

a E-field parallel to rail
b E-field perpendicular to rail
of [2] offered a convenient scale model for measurements in
an anechoic chamber. The dimensions are shown in Table 1.
The frequency scaling term is thus 2.585, scale frequencies of
27–31 GHz equating to operating frequencies of 10.4–
12.0 GHz.

One scale model arrangement is shown in Fig. 10, where
the model of the significant portion of the azimuth rail is
visible as a copper strip. In this experimental arrangement
it is also straightforward to alter the dimensions and radial
position of the rail so as to also investigate the effect of
alternative rail geometries.

The radiation patterns for the antenna shown in Fig. 10,
with and without the azimuth rail, are shown in Fig. 11.
Here the source polarisation is vertical, that is,
perpendicular to the ground plane and rail model. These
patterns are fairly typical of what has been observed over
many measurements: a slight decrease in peak directivity
and small growth in sidelobe levels. The measured

Table 1 Antenna dimensions (mm)

Full size Scale model

lens diameter 610 236

rail height 36 14

rail radius 480 186
Microw. Antennas Propag., 2010, Vol. 4, Iss. 7, pp. 828–836
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scanning loss was, respectively, 0.3 and 0.4 dB for vertical
(Ev) and horizontal (Eh) polarisation, which corroborates
the computed values.

The scanning loss results shown in Fig. 12 follow the
expected trend that the loss tends to increase with
decreasing elevation angle.

Further measurements were carried out to investigate
the alternative azimuth rail geometries so as to quantify
the reduction in scanning loss that could be expected.

Figure 10 Scale model of lens antenna with azimuth rail,
308 elevation
833
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Rail models of height 10 and 5 mm were investigated
for various radial distances so as to assess the trade-off
between scanning loss and space occupied by hardware.
The theoretical and measured scanning loss for two
polarisations and two elevation angles are shown in Table 2

Figure 11 Typical radiation patterns for scale model at
28 GHz, 14 mm rail

Figure 12 Scanning loss due to 14 mm rail at 28 GHz

a Parallel polarisation
b Perpendicular polarisation
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for a frequency of 28 GHz. A smaller set of data for a few
measurements taken at 31 GHz is also shown in Table 3.

Finally, some measurement data for scanning loss against
frequency are presented in Fig. 13 for a single rail geometry.
The model rail height of 10 mm would correspond to a full
size height of 26 mm. In this investigation we were looking
for any strong frequency dependence, none of which were
found over this frequency range.

Figure 13 Measured scanning loss against frequency for
10 mm rail at radius 186 mm and 248 elevation

Table 3 Scanning loss for rail distance 68 mm, 248 elevation
and at 31 GHz

Rail
height,

mm

Loss Eh (dB) Loss Ev (dB)

Theory Measurement Theory Measurement

14 0.79 0.9 0.96 1.2

10 0.58 0.7 0.62 0.6
Table 2 Scanning loss, theory and measurement, for alternative rail geometries at 28 GHz

Rail distance from
lens edge, mm

248 elevation, loss, dB 188 elevation, loss, dB

Eh Ev Eh Ev

Theory Measurement Theory Measurement Theory Measurement Theory Measurement

10 mm rail
height

10 1.12 1.3 1.19 1.4 1.37 1.5 0.95 1.2

68 0.59 0.7 0.72 0.9 0.98 1.3 0.79 0.9

118 0.38 0.3 0.43 0.5 0.71 0.9 0.71 0.8

5 mm rail
height

10 0.41 0.4 0.42 0.6 0.41 0.3 0.59 0.8

68 0.25 0.2 0.24 0.4 0.29 0.2 0.51 0.7

118 0.13 0.0 0.22 0.2 0.19 0.2 0.38 0.5
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5 Conclusions
Lens-reflector antennas can offer an attractive solution for
scanning antennas at microwave or millimetre wave
frequencies. A single feed lens can scan a beam without
recourse to rotary RF joints, whereas a multi-feed variant
offers multiple beams by sharing the lens aperture. In either
case, the finite reflector (ground plane) gives rise to
scanning loss at low elevation angle because the aperture
becomes truncated. This loss has been estimated using a
numerical method where a near-field planar aperture
distribution is first derived using SWE, and later modified
by removing terms in the truncated region. The far field is
then derived using a standard transform. Results for both
circular and square ground planes and an eight wavelength
diameter hemispherical lens have been presented.
Polarisation of an incident field either parallel or
perpendicular to the ground plane was considered. The
commercial solver FEKO was used to corroborate the
theoretical method and the agreement was good. Ground
plane extensions between zero, one-quarter, one-half and
one times the lens radius were examined, and the scanning
loss varied between zero and almost 4 dB depending on
scan angle, the lowest angle studied being 108.

The method was then adapted to consider the shadowed
region of the aperture introduced by a mechanical rail, which
surrounds a 61-cm diameter lens in a dual-beam scanning
antenna. At 10.8 GHz and upwards this problem is
intractable in FEKO because of electrical size, but theoretical
results were compared with a suite of measurements on a
scale model at around 28 GHz. This also allowed a
comparison of different rail geometries and thus indicates
how scanning loss can be reduced by simplifying and
making the rail smaller. In the example presented, the rail
height is 36 mm and the scanning loss it introduces starts to
become significant at a 308 elevation angle, where both
theory and scale model measurement indicate a loss of
0.4 dB, increasing to 1.5 dB measured at 188 elevation.
Should the azimuth rail be reduced to a height of 13 mm,
the scanning loss at 188 elevation angle should not exceed
about 0.7 dB, although this again varies slightly with
polarisation and frequency. This loss can be further reduced
by increasing the distance between the lens and the rail.

Scanning loss is often a critical performance metric for
antennas of the type discussed, and the techniques and
results presented should be of general applicability for
assessing various lens and ground plane geometries.
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8 Appendix: Notes on aperture
transforms
Although spectral techniques may under certain
circumstances be used over other smooth surfaces, they are
most commonly associated with sampling over planar
surfaces, as used here. For a given spherical lens, the SWE
method is used to populate terms for electric field for all
points across the aperture matrix of length Al.

This plane has axes x0, y0 parallel to the x, y plane and
centred at x0 ¼ 0, y0 ¼ 0, z0 ¼ za (Fig. 14).

Since the SWE method is naturally expressed in spherical
coordinates, the usual transformation from spherical to
Cartesian coordinates is encountered on deriving the
electric field in the aperture plane:

Ex̂(x0, y0) ¼ E
û

cos u cosf� E
f̂

sinf þ Er̂ sin u cosf

Having populated the terms of the aperture matrix for co-
polarised electric field Ex̂ these may be manipulated to
emulate the effect of objects that partially obstruct

Figure 14 Lens and aperture coordinate system
6
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or truncate that aperture. The shadowed regions are
treated as absorbing. The far field is then derived by
the usual near-field to far-field transform for a planar
aperture [12].

The method is analogous to conducting a near-field planar
scan of the antenna, either with or without the presence of
the obstructions, and then computing the far field from the
measured near field. The form of the planar aperture is
derived from a few well-established rules:

1. The extent of the near-field sampling area can be
determined from the maximum angular angle:
umax ¼ arctan(Al=2Dz) where Dz is the separation between
the antenna and the sampling plane.

2. As reactive fields are attenuated with distance (56.4 dB/
wavelength or more), the separation between the radiator
and the sampling plane will limit the resolution of the
sampled fields and the highest order plane wave
component. However, at present we are only interested in
fields that propagate to the far-field and so this separation
can be as large as 3 wavelengths.

3. Although the maximum value of sample spacing is
determined by the highest propagating plane wave
component and results in a sample spacing of half
wavelength in each axis [13], we need here a finer spacing
so as to capture the geometry of the electrically small
blocking structure.

Computation of the SWE for Ex across the aperture plane
is relatively time consuming depending on lens and aperture
size. From considerations of symmetry, it is necessary only to
compute one quadrant of the aperture. However, this need be
performed only once for a given lens geometry and frequency.
The transform to the far field (3) is relatively fast and so,
importantly, many variants of the geometry of the ground
plane or blocking objects can be analysed quite quickly. In
computing the far field we retained the discrete Fourier
transform (DFT) rather than the rearranged form, which is
the fast Fourier transform (FFT) since the speed of the
latter is bought at the price of the data being sampled on a
plaid, equally spaced grid. The output of the FFT is
sampled on a regular direction cosine grid, which is not
convenient for antenna patterns when an angular sampling
space is usually required, so the pattern data must be
interpolated from the direction cosine grid onto the desired
angular grid. If this is implemented using approximation
(i.e. piecewise polynomial interpolation) inaccuracies can be
introduced into the results; alternatively, if sampling theory
interpolation is used, this can be as intensive as the direct
DFT. Thus, for these reasons, when using powerful
modern computers, the computational effort required by
the DFT can be an acceptable price to pay, particularly
when recurrence relations are used to improve the efficiency
of the algorithm [14, 15].
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